Journal Article FZJ-2024-05517

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Translating phenotypic prediction models from big to small anatomical MRI data using meta-matching

 ;  ;  ;  ;  ;  ;  ;  ;

2024
MIT Press Cambridge, MA

Imaging neuroscience 2, 1 - 21 () [10.1162/imag_a_00251]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: Individualized phenotypic prediction based on structural magnetic resonance imaging (MRI) is an important goal in neuroscience. Prediction performance increases with larger samples, but small-scale datasets with fewer than 200 participants are often unavoidable. We have previously proposed a “meta-matching” framework to translate models trained from large datasets to improve the prediction of new unseen phenotypes in small collection efforts. Meta-matching exploits correlations between phenotypes, yielding large improvement over classical machine learning when applied to prediction models using resting-state functional connectivity as input features. Here, we adapt the two best performing meta-matching variants (“meta-matching finetune” and “meta-matching stacking”) from our previous study to work with T1-weighted MRI data by changing the base neural network architecture to a 3D convolution neural network. We compare the two meta-matching variants with elastic net and classical transfer learning using the UK Biobank (N = 36,461), the Human Connectome Project Young Adults (HCP-YA) dataset (N = 1,017), and the HCP-Aging dataset (N = 656). We find that meta-matching outperforms elastic net and classical transfer learning by a large margin, both when translating models within the same dataset and when translating models across datasets with different MRI scanners, acquisition protocols, and demographics. For example, when translating a UK Biobank model to 100 HCP-YA participants, meta-matching finetune yielded a 136% improvement in variance explained over transfer learning, with an average absolute gain of 2.6% (minimum = –0.9%, maximum = 17.6%) across 35 phenotypes. Overall, our results highlight the versatility of the meta-matching framework.

Classification:

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 5254 - Neuroscientific Data Analytics and AI (POF4-525) (POF4-525)
  2. 5252 - Brain Dysfunction and Plasticity (POF4-525) (POF4-525)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; DOAJ Seal
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-7
Workflow collections > Public records
Publications database
Open Access

 Record created 2024-09-13, last modified 2025-02-03


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)