Journal Article FZJ-2025-01776

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Laser-Micro-Annealing of Microcrystalline Ni-Rich NCM Oxide: Towards Micro-Cathodes Integrated on Polyethylene Terephthalate Flexible Substrates

 ;  ;  ;  ;

2025
MDPI Basel

Materials 18(3), 680 - () [10.3390/ma18030680]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Here in this work, we report on micro-Raman spectroscopy investigations performed on freestanding Ni-rich NCM (LixNi0.83Co0.11Mn0.06O2) microcrystals transferred to flexible polyethylene terephthalate (PET) host substrates. This technological procedure introduces a first building block for future on-chip-integrated micro-accumulators for applications in flexible optoelectronics, sensors, microbiology, and human medicine. An after-synthesis thermal treatment was used to help improve the material homogeneity and perfection of the cathode material. To this end, a local laser micro-annealing process was applied to the freestanding Ni-rich NCM microcrystals. The thermally initialized structural processes in the singular micro-cathode units were characterized and determined by micro-Raman spectroscopy. Micro-Raman mapping images revealed the evolution of a recrystallization process after the local annealing procedure. Furthermore, laser micro-annealing led to the suppression of the pristine “polycrystalline morphology” of the investigated micro-cathode regions. Besides the dominant characteristic Raman mode at ~1085 cm−1, most likely ascribed to lithium carbonate, metal oxides with Raman modes around ~550 cm−1 were identified. This highly efficient transfer and integration technology represents a basic building block towards micrometer-sized accumulators for a large range of emerging applications.

Classification:

Note: This research was funded by the Joint Lab for Integrated Model and Data-Driven Material Characterization (MDMC) of the Helmholtz Association.

Contributing Institute(s):
  1. Materialwissenschaft u. Werkstofftechnik (ER-C-2)
Research Program(s):
  1. 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535) (POF4-535)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2025-02-17, last modified 2025-03-10


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)