TypAmountVATCurrencyShareStatusCost centre
APC600.000.00EUR100.00 %(Zahlung erfolgt)ZB
Sum600.000.00EUR   
Total600.00     
Journal Article FZJ-2025-04277

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Learning-Driven Annealing with Adaptive Hamiltonian Modification for Solving Large-Scale Problems on Quantum Devices

 ;  ;

2025
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften Wien

Quantum 9, 1898 () [10.22331/q-2025-10-29-1898]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: We present Learning-Driven Annealing (LDA), a framework that links individual quantum annealing evolutions into a global solution strategy to mitigate hardware constraints such as short annealing times and integrated control errors. Unlike other iterative methods, LDA does not tune the annealing procedure (e.g. annealing time or annealing schedule), but instead learns about the problem structure to adaptively modify the problem Hamiltonian. By deforming the instantaneous energy spectrum, LDA suppresses transitions into high-energy states and focuses the evolution into low-energy regions of the Hilbert space. We demonstrate the efficacy of LDA by developing a hybrid quantum-classical solver for large-scale spin glasses. The hybrid solver is based on a comprehensive study of the internal structure of spin glasses, outperforming other quantum and classical algorithms (e.g., reverse annealing, cyclic annealing, simulated annealing, Gurobi, Toshiba's SBM, VeloxQ and D-Wave hybrid) on 5580-qubit problem instances in both runtime and lowest energy. LDA is a step towards practical quantum computation that enables today's quantum devices to compete with classical solvers.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY (No Version) ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2025-10-27, letzte Änderung am 2025-11-29


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)