Journal Article PreJuSER-14997

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Bipolar resistive switching in oxides: mechanisms and scaling

 ;  ;  ;  ;  ;  ;  ;

2011
Elsevier Science Amsterdam [u.a.]

Current applied physics 11, E75 - E78 () [10.1016/j.cap.2010.10.022]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Recently bipolar resistive switching of transition metal oxides is investigated to be used in next-generation non-volatile memory technologies. Switchable resistance states are based on reduction and oxidation (redox) reactions within the oxides. In the first part of this study resistive switching in Fe-doped SrTiO3 thin films is discussed. Careful conductive tip AFM analysis revealed that after the electroforming and top electrode removal a very complex switching behavior emerges. Locally separated filamentary as well as area dependent switching with different switching polarity with respect to the bias polarity of the SET and RESET processes were observed in the same sample. In the second part of the paper nanocrossbar devices are proposed as a vehicle to ease the comparison of promising materials using identical device geometry. The potential scaling behavior of resistively switching memory elements is addressed by the preparation of nominally 100 x 100 nm(2) crosspoint structures using two different transition metal oxides, namely NiO and TiO2. (C) 2011 Elsevier B. V. All rights reserved.

Keyword(s): J ; Resistive switching (auto) ; Mechanism (auto) ; Scaling (auto)


Note: This work was supported in part by Intel Corp., Santa Clara, USA. We thank R. Borowski, M. Grates, C. Kuegeler, M. Meier, C. Nauenheim, R. Rosezin, A. Ruediger, and K. Szot for their contributions to this study.

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology (JARA-FIT)
Research Program(s):
  1. Grundlagen für zukünftige Informationstechnologien (P42)

Appears in the scientific report 2011
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database

 Record created 2012-11-13, last modified 2018-02-08



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)