Journal Article FZJ-2014-03721

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Modelling the impact of heterogeneous rootzone water distribution on the regulation of transpiration by hormone transport and/or hydraulic pressures

 ;  ;  ;  ;  ;

2014
Springer Science + Business Media B.V Dordrecht [u.a.]

Plant and soil 384(1-2), 93-112 () [10.1007/s11104-014-2188-4]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Aims: A simulation model to demonstrate that soil water potential can regulate transpiration, by influencing leaf water potential and/or inducing root production of chemical signals that are transported to the leaves.Methods: Signalling impacts on the relationship between soil water potential and transpiration were simulated by coupling a 3D model for water flow in soil, into and through roots (Javaux et al.2008) with a model for xylem transport of chemicals (produced as a function of local root water potential). Stomatal conductance was regulated by simulated leaf water potential (H) and/or foliar chemical signal concentrations (C; H+C). Split-root experiments were simulated by varying transpiration demands and irrigation placement.Results: While regulation of stomatal conductance by chemical transport was unstable and oscillatory, simulated transpiration over time and root water uptake from the two soil compartments were similar for both H and H+C regulation. Increased stomatal sensitivity more strongly decreased transpiration, and decreased threshold root water potential (below which a chemical signal is produced) delayed transpiration reduction. Conclusions: Although simulations with H+C regulation qualitatively reproduced transpiration of plants exposed to partial rootzone drying (PRD), long-term effects seemed negligible. Moreover, most transpiration responses to PRD could be explained by hydraulic signalling alone.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246) (POF2-246)
  2. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2014
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-3
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2014-07-08, letzte Änderung am 2021-01-29


Restricted:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)