Journal Article FZJ-2014-04458

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Impact of composition and crystallization behavior of atomic layer deposited strontium titanate films on the resistive switching of Pt/STO/TiN devices

 ;  ;  ;  ;  ;  ;  ;

2014
American Institute of Physics Melville, NY

Journal of applied physics 116(6), 064503 - () [10.1063/1.4891831]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The resistive switching (RS) properties of strontium titanate (Sr1+xTi1+yO3+(x+2y), STO) based metal-oxide-metal structures prepared from industrial compatible processes have been investigated focusing on the effects of composition, microstructure, and device size. Metastable perovskite STO films were prepared on Pt-coated Si substrates utilizing plasma-assisted atomic layer deposition (ALD) from cyclopentadienyl-based metal precursors and oxygen plasma at 350 °C, and a subsequent annealing at 600 °C in nitrogen. Films of 15 nm and 12 nm thickness with three different compositions [Sr]/([Sr] + [Ti]) of 0.57 (Sr-rich STO), 0.50 (stoichiometric STO), and 0.46 (Ti-rich STO) were integrated into Pt/STO/TiN crossbar structures with sizes ranging from 100 μm2 to 0.01 μm2. Nano-structural characterizations revealed a clear effect of the composition of the as-deposited STO films on their crystallization behavior and thus on the final microstructures. Local current maps obtained by local-conductivity atomic force microscopy were in good agreement with local changes of the films' microstructures. Correspondingly, also the initial leakage currents of the Pt/STO/TiN devices were affected by the STO compositions and by the films' microstructures. An electroforming process set the Pt/STO/TiN devices into the ON-state, while the forming voltage decreased with increasing initial leakage current. After a RESET process under opposite voltage has been performed, the Pt/STO/TiN devices showed a stable bipolar RS behavior with non-linear current-voltage characteristics for the high (HRS) and the low (LRS) resistance states. The obtained switching polarity and nearly area independent LRS values agree with a filamentary character of the RS behavior according to the valence change mechanism. The devices of 0.01 μm2 size with a 12 nm polycrystalline stoichiometric STO film were switched at a current compliance of 50 μA with voltages of about ±1.0 V between resistance states of about 40 kΩ (LRS) and 1 MΩ (HRS). After identification of the influences of the films' microstructures, i.e., grain boundaries and small cracks, the remaining RS properties could be ascribed to the effect of the [Sr]/([Sr] + [Ti]) composition of the ALD STO thin films.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
Research Program(s):
  1. 424 - Exploratory materials and phenomena (POF2-424) (POF2-424)

Appears in the scientific report 2014
Database coverage:
Medline ; OpenAccess ; Allianz-Lizenz / DFG ; Current Contents - Social and Behavioral Sciences ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2014-08-20, last modified 2022-09-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)