Journal Article FZJ-2014-05640

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Diurnal Dynamics of Wheat Evapotranspiration Derived from Ground-Based Thermal Imagery

 ;  ;  ;  ;  ;

2014
MDPI Basel

Remote sensing 6(10), 9775 - 9801 () [10.3390/rs6109775]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The latent heat flux, one of the key components of the surface energy balance, can be inferred from remotely sensed thermal infrared data. However, discrepancies between modeled and observed evapotranspiration are large. Thermal cameras might provide a suitable tool for model evaluation under variable atmospheric conditions. Here, we evaluate the results from the Penman-Monteith, surface energy balance and Bowen ratio approaches, which estimate the diurnal course of latent heat fluxes at a ripe winter wheat stand using measured and modeled temperatures. Under overcast conditions, the models perform similarly, and radiometric image temperatures are linearly correlated with the inverted aerodynamic temperature. During clear sky conditions, the temperature of the wheat ear layer could be used to predict daytime turbulent fluxes (root mean squared error and mean absolute error: 20–35 W∙m−2, r2: 0.76–0.88), whereas spatially-averaged temperatures caused underestimation of pre-noon and overestimation of afternoon fluxes. Errors are dependent on the models’ ability to simulate diurnal hysteresis effects and are largest during intermittent clouds, due to the discrepancy between the timing of image capture and the time needed for the leaf-air-temperature gradient to adapt to changes in solar radiation. During such periods, we suggest using modeled surface temperatures for temporal upscaling and the validation of image data.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 89582 - Plant Science (POF2-89582) (POF2-89582)

Appears in the scientific report 2014
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2014-11-03, letzte Änderung am 2021-01-29


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)