Journal Article FZJ-2014-06917

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Photoresponsive properties of ultrathin silicon nanowires

 ;  ;  ;  ;  ;  ;

2014
American Inst. of Physics Melville, NY

Applied physics letters 105(23), 231116 () [10.1063/1.4904089]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Functional silicon nanowires (SiNWs) are promising building blocks in the design of highly sensitive photodetectors and bio-chemical sensors. We systematically investigate the photoresponse properties of ultrathin SiNWs (20 nm) fabricated using a size-reduction method based on e-beam lithography and tetramethylammonium hydroxide wet-etching. The high-quality SiNWs were able to detect light from the UV to the visible range with excellent sensitivity (∼1 pW/array), good time response, and high photoresponsivity (R ∼ 2.5 × 104 A/W). Improvement of the ultrathin SiNWs' photoresponse has been observed in comparison to 40 nm counter-part nanowires. These properties are attributable to the predominance surface-effect due to the high surface-to-volume ratio of ultrathin SiNWs. Long-term measurements at different temperatures in both the forward and reverse bias directions demonstrated the stability and reliability of the fabricated device. By sensitizing the fabricated SiNW arrays with cadmium telluride quantum dots (QDs), hybrid QD SiNW devices displayed an improvement in photocurrent response under UV light, while preserving their performance in the visible light range. The fast, stable, and high photoresponse of these hybrid nanostructures is promising towards the development of optoelectronic and photovoltaic devices

Classification:

Contributing Institute(s):
  1. Bioelektronik (PGI-8)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 423 - Sensorics and bioinspired systems (POF2-423) (POF2-423)

Appears in the scientific report 2014
Database coverage:
Medline ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Workflow collections > Public records
Publications database
Open Access
PGI-8

 Record created 2014-12-15, last modified 2021-01-29


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)