Journal Article FZJ-2015-02120

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification

 ;  ;  ;  ;  ;  ;  ;

2015
BioMed Central London

Plant methods 11(1), 17 () [10.1186/s13007-015-0060-z]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: BackgroundRoots are vital to plants for soil exploration and uptake of water and nutrients. Root performance is critical for growth and yield of plants, in particular when resources are limited. Since roots develop in strong interaction with the soil matrix, tools are required that can visualize and quantify root growth in opaque soil at best in 3D. Two modalities that are suited for such investigations are X-ray Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Due to the different physical principles they are based on, these modalities have their specific potentials and challenges for root phenotyping. We compared the two methods by imaging the same root systems grown in 3 different pot sizes with inner diameters of 34 mm, 56 mm or 81 mm.ResultsBoth methods successfully visualized roots of two weeks old bean plants in all three pot sizes. Similar root images and almost the same root length were obtained for roots grown in the small pot, while more root details showed up in the CT images compared to MRI. For the medium sized pot, MRI showed more roots and higher root lengths whereas at some spots thin roots were only found by CT and the high water content apparently affected CT more than MRI. For the large pot, MRI detected much more roots including some laterals than CT.ConclusionsBoth techniques performed equally well for pots with small diameters which are best suited to monitor root development of seedlings. To investigate specific root details or finely graduated root diameters of thin roots, CT was advantageous as it provided the higher spatial resolution. For larger pot diameters, MRI delivered higher fractions of the root systems than CT, most likely because of the strong root-to-soil contrast achievable by MRI. Since complementary information can be gathered with CT and MRI, a combination of the two modalities could open a whole range of additional possibilities like analysis of root system traits in different soil structures or under varying soil moisture.

Keyword(s): Biology (2nd)

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2015
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2015-03-19, last modified 2022-09-30


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)