Journal Article FZJ-2015-04517

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Characterization of Ni-cermet degradation phenomena I. Long termresistivity monitoring, image processing and X-ray fluorescenceanalysis

 ;  ;  ;  ;  ;  ;

2015
Elsevier New York, NY [u.a.]

Journal of power sources 286, 414 - 426 () [10.1016/j.jpowsour.2015.03.168]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: The present paper is devoted to Ni-cermet degradation phenomena and places emphasis on experimental approaches and data handling. The resistivity of Ni-YSZ cermet (nickel and 8 mol.% yttria stabilized zirconia) anode substrates was monitored during 3000 h at 700 and 800 °C in a gas mixture of 80 vol.% water vapor and 20 vol.% hydrogen. The experimentally evaluated dependence of resistivity of the Ni-YSZ substrates can be well described by exponential decay functions. Post test analysis by image processing and XRF (X-ray fluorescence) analysis for characterization of the microstructure and elemental composition were carried out for virgin samples and after 300, 1000 and 3000 h of exposure time. The 3D-microstructure was reconstructed using an original spheres packing algorithm. Two processes leading to the Ni-YSZ degradation were observed: Ni-phase particle coarsening and volatilization. The effect of these processes on resistivity and such microstructure parameters as porosity, Ni-phase fraction, Ni and YSZ phases particle size distributions, triple phase boundary length, and tortuosity factor are considered in this paper.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)

Appears in the scientific report 2015
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
IEK > IEK-9
Publications database

 Record created 2015-06-19, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)