TypAmountVATCurrencyShareStatusCost centre
APC3700.000.00EUR100.00 %(Zahlung erfolgt)ZB
Sum3700.000.00EUR   
Total3700.00     
Journal Article FZJ-2016-05161

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Upscaling of integrated photoelectrochemical water-splitting devices to large areas

 ;  ;  ;  ;  ;

2016
Nature Publishing Group London

Nature Communications 7, 12681 () [10.1038/ncomms12681]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Photoelectrochemical water splitting promises both sustainable energy generation and energy storage in the form of hydrogen. However, the realization of this vision requires laboratory experiments to be engineered into a large-scale technology. Up to now only few concepts for scalable devices have been proposed or realized. Here we introduce and realize a concept which, by design, is scalable to large areas and is compatible with multiple thin-film photovoltaic technologies. The scalability is achieved by continuous repetition of a base unit created by laser processing. The concept allows for independent optimization of photovoltaic and electrochemical part. We demonstrate a fully integrated, wireless device with stable and bias-free operation for 40 h. Furthermore, the concept is scaled to a device area of 64 cm2 comprising 13 base units exhibiting a solar-to-hydrogen efficiency of 3.9%. The concept and its successful realization may be an important contribution towards the large-scale application of artificial photosynthesis.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 121 - Solar cells of the next generation (POF3-121) (POF3-121)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2016
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-5
Publications database
Open Access

 Record created 2016-10-05, last modified 2024-07-12