Journal Article FZJ-2016-07836

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Rh doped Pt-Ni octahedral nanoparticles: Correlation between elemental Distribution and ORR stabilty

 ;  ;  ;  ;  ;  ;

2016
ACS Publ. Washington, DC

Nano letters 16(3), 1719 - 1725 () [10.1021/acs.nanolett.5b04636]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Thanks to their remarkably high activity toward oxygen reduction reaction (ORR), platinum-based octahedrally shaped nanoparticles have attracted ever increasing attention in last years. Although high activities for ORR catalysts have been attained, the practical use is still limited by their long-term stability. In this work, we present Rh-doped Pt–Ni octahedral nanoparticles with high activities up to 1.14 A mgPt–1 combined with improved performance and shape stability compared to previous bimetallic Pt–Ni octahedral particles. The synthesis, the electrocatalytic performance of the particles toward ORR, and atomic degradation mechanisms are investigated with a major focus on a deeper understanding of strategies to stabilize morphological particle shape and consequently their performance. Rh surface-doped octahedral Pt–Ni particles were prepared at various Rh levels. At and above about 3 atom %, the nanoparticles maintained their octahedral shape even past 30 000 potential cycles, while undoped bimetallic reference nanoparticles show a complete loss in octahedral shape already after 8000 cycles in the same potential window. Detailed atomic insight in these observations is obtained from aberration-corrected scanning transmission electron microscopy (STEM) and energy dispersive X-ray (EDX) analysis. Our analysis shows that it is the migration of Pt surface atoms and not, as commonly thought, the dissolution of Ni that constitutes the primary origin of the octahedral shape loss for Pt–Ni nanoparticles. Using small amounts of Rh we were able to suppress the migration rate of platinum atoms and consequently suppress the octahedral shape loss of Pt–Ni nanoparticles.

Classification:

Contributing Institute(s):
  1. Mikrostrukturforschung (PGI-5)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2016
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > ER-C > ER-C-1
Institutssammlungen > PGI > PGI-5
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2016-12-20, letzte Änderung am 2024-06-10


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)