Journal Article FZJ-2017-00120

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Dynamic O -(2-$^{18}$ F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2017
Oxford Univ. Press Oxford

Neuro-Oncology 19(2), 281-288 () [10.1093/neuonc/now149]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: BackgroundThe aim of this study was to investigate the potential of dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET for differentiating local recurrent brain metastasis from radiation injury after radiotherapy since contrast-enhanced MRI often remains inconclusive.MethodsSixty-two patients (mean age, 55 ± 11 y) with single or multiple contrast-enhancing brain lesions (n = 76) on MRI after radiotherapy of brain metastases (predominantly stereotactic radiosurgery) were investigated with dynamic 18F-FET PET. Maximum and mean tumor-to-brain ratios (TBRmax, TBRmean) of 18F-FET uptake were determined (20–40 min postinjection) as well as tracer uptake kinetics (ie, time-to-peak and slope of time-activity curves). Diagnoses were confirmed histologically (34%; 26 lesions in 25 patients) or by clinical follow-up (66%; 50 lesions in 37 patients). Diagnostic accuracies of PET parameters for the correct identification of recurrent brain metastasis were evaluated by receiver-operating-characteristic analyses or the chi-square test.ResultsTBRs were significantly higher in recurrent metastases (n = 36) than in radiation injuries (n = 40) (TBRmax 3.3 ± 1.0 vs 2.2 ± 0.4, P < .001; TBRmean 2.2 ± 0.4 vs 1.7 ± 0.3, P < .001). The highest accuracy (88%) for diagnosing local recurrent metastasis could be obtained with TBRs in combination with the slope of time-activity curves (P < .001).ConclusionsThe results of this study confirm previous preliminary observations that the combined evaluation of the TBRs of 18F-FET uptake and the slope of time-activity curves can differentiate local brain metastasis recurrence from radiation-induced changes with high accuracy. 18F-FET PET may thus contribute significantly to the management of patients with brain metastases.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
  2. Physik der Medizinischen Bildgebung (INM-4)
  3. JARA-BRAIN (JARA-BRAIN)
Research Program(s):
  1. 573 - Neuroimaging (POF3-573) (POF3-573)

Appears in the scientific report 2017
Database coverage:
Medline ; Allianz-Lizenz / DFG ; Current Contents - Clinical Medicine ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-BRAIN
Institute Collections > INM > INM-3
Institute Collections > INM > INM-4
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database

 Record created 2017-01-05, last modified 2022-09-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)