Journal Article FZJ-2017-05975

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
O-(2-[$^{18}$F]fluoroethyl)-l-tyrosine PET in gliomas: influence of data processing in different centres

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2017
Springer Berlin

EJNMMI Research 7(1), 64 () [10.1186/s13550-017-0316-x]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: BackgroundPET using O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) is an established method for brain tumour diagnostics, but data processing varies in different centres. This study analyses the influence of methodological differences between two centres for tumour characterization with 18F-FET PET using the same PET scanner.Methodological differences between centres A and B in the evaluation of 18F-FET PET data were identified for (1) framing of PET dynamic data, (2) data reconstruction, (3) cut-off values for tumour delineation to determine tumour-to-brain ratios (TBR) and tumour volume (Tvol) and (4) ROI definition to determine time activity curves (TACs) in the tumour. Based on the 18F-FET PET data of 40 patients with untreated cerebral gliomas (20 WHO grade II, 10 WHO grade III, 10 WHO grade IV), the effect of different data processing in the two centres on TBRmean, TBRmax, Tvol, time-to-peak (TTP) and slope of the TAC was compared. Further, the effect on tumour grading was evaluated by ROC analysis.ResultsSignificant differences between centres A and B were found especially for TBRmax (2.84 ± 0.99 versus 3.34 ± 1.13; p < 0.001), Tvol (1.14 ± 1.28 versus 1.51 ± 1.44; p < 0.001) and TTP (22.4 ± 8.3 min versus 30.8 ± 6.3 min; p < 0.001) and minor differences for TBRmean and slope. Tumour grading was not influenced by different data processing.ConclusionsVariable data processing of 18F-FET PET in different centres leads to significant differences especially for TBRmax and Tvol. A standardization of data processing and evaluation is needed to make 18F-FET PET comparable between different centres.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
  2. Physik der Medizinischen Bildgebung (INM-4)
Research Program(s):
  1. 572 - (Dys-)function and Plasticity (POF3-572) (POF3-572)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Current Contents - Clinical Medicine ; DOAJ Seal ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-3
Institute Collections > INM > INM-4
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2017-08-17, last modified 2022-09-30