Journal Article FZJ-2017-06455

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Measuring and Modeling Hydraulic Lift of Using Stable Water Isotopes

 ;  ;  ;  ;  ;  ;  ;  ;

2017
SSSA Madison, Wis.

Vadose zone journal ( ), () [10.2136/vzj2016.12.0134]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: This study tested a method to quantify and locate hydraulic lift (HL, defined as the passive upward water flow from wetter to dryer soil zones through the plant root system) by combining an experiment using the stable water isotope 1H2 18O as a tracer with a soil–plant water flow model. Our methodology consisted in (i) establishing the initial conditions for HL in a large rhizobox planted with Italian ryegrass (Lolium multiflorum Lam.), (ii) labeling water in the deepest soil layer with an 18O-enriched solution, (iii) monitoring the water O isotopic composition in soil layers to find out changes in the upper layers that would reflect redistribution of 18O-enriched water from the bottom layers by the roots, and (iv) comparing the observed soil water O isotopic composition to simulation results of a three-dimensional model of water flow and isotope transport in the soil–root system. Our main findings were that (i) the depth and strength of the observed changes in soil water O isotopic composition could be well reproduced with a modeling approach (RMSE = 0.2‰, i.e., equivalent to the precision of the isotopic measurements), (ii) the corresponding water volume involved in HL was estimated to account for 19% of the plant transpiration of the following day, i.e., 0.45 mm of water, and was in agreement with the observed soil water content changes, and (iii) the magnitude of the simulated HL was sensitive to both plant and soil hydraulic properties.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2017-09-08, last modified 2021-01-29