Journal Article FZJ-2018-01190

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The method of fundamental solutions for computing acoustic interior transmission eigenvalues

 ;

2018

Inverse problems 34(3), 035007 () [10.1088/1361-6420/aaa72d]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: We analyze the method of fundamental solutions (MFS) in two different versions with focus on the computation of approximate acoustic interior transmission eigenvalues in 2D for homogeneous media. Our approach is mesh- and integration free, but suffers in general from the ill-conditioning effects of the discretized eigenoperator, which we could then successfully balance using an approved stabilization scheme. Our numerical examples cover many of the common scattering objects and prove to be very competitive in accuracy with the standard methods for PDE-related eigenvalue problems. We finally give an approximation analysis for our framework and provide error estimates, which bound interior transmission eigenvalue deviations in terms of some generalized MFS output.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  2. PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) (PHD-NO-GRANT-20170405)

Appears in the scientific report 2018
Database coverage:
Medline ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2018-02-06, letzte Änderung am 2021-01-29