Journal Article FZJ-2018-02484

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Characterizing Redox Potential Effects on Greenhouse Gas Emissions Induced by Water-Level Changes

 ;  ;  ;

2018
SSSA Madison, Wis.

Vadose zone journal 17(1), 0 - () [10.2136/vzj2017.08.0152]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Soil greenhouse gas (GHG) emissions contribute to global warming. To support mitigation measures against global warming, it is important to understand the controlling processes of GHG emissions. Previous studies focusing mainly on paddy rice fields or wetlands showed a strong relationship between soil redox potential and GHG emission (e.g., N2O). However, the interpretation of redox potentials for the understanding of the controlling factors of GHG emission is limited due to the low number of continuous redox measurements in most ecosystems. Recent sensor developments open the possibility for the long-term monitoring of field-scale soil redox potential changes. We performed laboratory lysimeter experiments to investigate how changes in the redox potential, induced by changes in the water level, affect GHG emissions from agricultural soil. Under our experimental conditions, we found that N2O emissions followed closely the changes in redox potential. The dynamics of redox potential were induced by changing the water-table depth in a laboratory lysimeter. Before fertilization during saturated conditions, we found a clear negative correlation between redox potentials and N2O emission rates. After switching from saturated to unsaturated conditions, N2O emission quickly decreased, indicating denitrification as the main source of N2O. In contrast, the emissions of CO2 increased with increasing soil redox potentials. After fertilization, N2O emission peaked at high redox potential, suggesting nitrification as the main production pathway, which was confirmed by isotope analysis of N2O. We propose that redox potential measurements are a viable method for better understanding of the controlling factors of GHG emissions, for the differentiation between different source processes, and for the improvement of process-based GHG models.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2018
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2018-04-18, last modified 2022-09-30