Home > Publications database > Triangular {Ni3} coordination cluster with a ferromagnetically coupled metal-ligand core |
Journal Article | FZJ-2018-07492 |
; ; ; ; ; ;
2018
Elsevier Science
Amsterdam [u.a.]
This record in other databases:
Please use a persistent id in citations: doi:10.1016/j.poly.2018.01.014
Abstract: The coordination characteristics of a tridentate, π-conjugated Schiff base (HL·SMe) combined with 4-(methylthio)benzoic acid (Hbza·SMe) were explored in methanol solution. A two-step aerobic process involving the precursor NiCl2·6H2O afforded the trinuclear coordination compound [NiII3(L·SMe)4(bza·SMe)(MeOH)2]Cl0.5(CH3O)0.5·5.5MeOH·H2O (1), while the precursor Ni(ClO4)2·6H2O resulted in [NiII3(L·SMe)4(bza·SMe)(MeOH)2](ClO4)0.75(CH3O)0.25·1.5MeOH·0.75H2O (2); in both cases the thioether-containing ligands are key to isolation of crystalline products. Their solvent-free cationic motif [Ni3(L·SMe)4(bza·SMe)]+, supported by two different types of monodeprotonated chelate ligands, has been studied by electrospray ionization mass spectrometry. 1 and 2 crystallize in the triclinic space group and monoclinic space group Cc, respectively, and feature a hitherto not observed triangular metal-ligand skeleton that is characterized by predominantly ferromagnetic exchange coupling between Ni(II) ions. Proof-of-concept infrared reflection–absorption spectroscopy measurements of 1 deposited on a gold substrate indicate that this moisture-stable compound retains its main structural features upon adsorption on the metal surface, which enables subsequent studies of catalytic properties of 1 on a solid support.
![]() |
The record appears in these collections: |