Journal Article FZJ-2019-01365

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
ESERK5: A fifth-order extrapolated stabilized explicit Runge–Kutta method

 ;

2019
North-Holland Amsterdam

Journal of computational and applied mathematics 356, 22-36 () [10.1016/j.cam.2019.01.040]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: A new algorithm is developed and analyzed for multi-dimensional non-linear parabolic partial differential equations (PDEs) which are semi-discretized in the spatial variables leading to a system of ordinary differential equations (ODEs). It is based on fifth-order extrapolated stabilized explicit Runge–Kutta schemes (ESERK). They are explicit methods, and therefore it is not necessary to employ complicated software for linear or non-linear system of equations. Additionally, they have extended stability regions along the negative real semi-axis, hence they can be considered to solve stiff problems coming from very common diffusion or reaction–diffusion problems.Previously, only lower-order codes (up to fourth-order) have been constructed and made available in the scientific literature. However, at the same time, higher-order codes were demonstrated to be very efficient to solve equations where it is necessary to have a high precision or they have transient zones that are very severe, and where functions change very fast. The new schemes allow changing the step length very easily and with a very small computational cost. Thus, a variable step length, with variable number of stages algorithm is constructed and compared with good numerical results in relation to other well-known ODE solvers.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2019-02-12, last modified 2021-01-30