Contribution to a book FZJ-2019-03904

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Shape Optimization for Interior Neumann and Transmission Eigenvalues



2019
Springer International Publishing Cham
ISBN: 978-3-030-16076-0

Integral Methods in Science and Engineering Cham : Springer International Publishing 185-196 () [10.1007/978-3-030-16077-7_15]

This record in other databases:

Please use a persistent id in citations:   doi:

Abstract: Shape optimization problems for interior eigenvalues is a very challenging task since already the computation of interior eigenvalues for a given shape is far from trivial. For example, a concrete maximizer with respect to shapes of fixed area is theoretically established only for the first two non-trivial Neumann eigenvalues. The existence of such a maximizer for higher Neumann eigenvalues is still unknown. Hence, the problem should be addressed numerically. Better numerical results are achieved for the maximization of some Neumann eigenvalues using boundary integral equations for a simplified parametrization of the boundary in combination with a non-linear eigenvalue solver. Shape optimization for interior transmission eigenvalues is even more complicated since the corresponding transmission problem is non-self-adjoint and non-elliptic. For the first time numerical results are presented for the minimization of interior transmission eigenvalues for which no single theoretical result is yet available.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2019
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Bücher > Buchbeitrag
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2019-07-22, letzte Änderung am 2021-01-30


OpenAccess:
1810.00629-1 - Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
kleefeldARXIV - Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)