Journal Article FZJ-2019-05169

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
La2Ni1-xCoxO4þδ (x ¼ 0.0, 0.1 and 0.2) based efficient oxygen electrode materials for solid oxide electrolysis cells

 ;  ;  ;  ;

2019
Elsevier New York, NY [u.a.]

Journal of power sources 444, 227292 - () [10.1016/j.jpowsour.2019.227292]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The present study is focused on the development of alternative oxygen electrodes for Solid Oxide Electrolysis Cells (SOECs). Rare earth nickelates with general formula Ln2NiO4+δ (Ln = La, Pr or Nd) have shown good performance as oxygen electrodes with various electrolytes. Among them, La2NiO4+δ is most stable nickelate by itself however its electrochemical performance is lower compare to Pr2NiO4+δ. Therefore, to further enhance the physico-chemical properties, electrochemical performance of La2NiO4+δ as SOECs oxygen electrode, herein, we have performed the substitution of nickel with cobalt. Three compositions (x = 0.0, 0.1 and 0.2) were mainly considered and completely characterized using several techniques. The symmetrical as well as single cells were then prepared and electrochemically characterized using DC- and AC-techniques in the temperature range 700–900 °C. The electrode reaction mechanism was also investigated by recording the impedance spectra at different pO2. With cobalt substitution, an improvement in electrochemical performance as well lower degradation rate is observed during long term SOEC operation at −1 A⋅cm−2 current density at 800 °C with 50% H2 and 50% H2O feed gas mixture.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IET > IET-1
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
IEK > IEK-9
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2019-10-22, letzte Änderung am 2024-07-12