Journal Article FZJ-2019-05295

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Surprising Non-Additivity of Methyl-Groups in Drug-Kinase Interaction

 ;  ;  ;  ;  ;

2019
Soc. Washington, DC

ACS chemical biology 14(12), 2585-2594 () [10.1021/acschembio.9b00476]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Drug optimization is guided by biophysical methods with increasing popularity. In the context of lead structure modifications, the introduction of methyl groups is a simple but potentially powerful approach. Hence, it is crucial to systematically investigate the influence of ligand methylation on biophysical characteristics such as thermodynamics. Here, we investigate the influence of ligand methylation in different positions and combinations on the drug–kinase interaction. Binding modes and complex structures were analyzed using protein crystallography. Thermodynamic signatures were measured via isothermal titration calorimetry (ITC). An extensive computational analysis supported the understanding of the underlying mechanisms. We found that not only position but also stereochemistry of the methyl group has an influence on binding potency as well as the thermodynamic signature of ligand binding to the protein. Strikingly, the combination of single methyl groups does not lead to additive effects. In our case, the merger of two methyl groups in one ligand leads to an entirely new alternative ligand binding mode in the protein ligand complex. Moreover, the combination of the two methyl groups also resulted in a nonadditive thermodynamic profile of ligand binding. Molecular dynamics (MD) simulations revealed distinguished characteristic motions of the ligands in solution explaining the pronounced thermodynamic changes. The unexpected drastic change in protein ligand interaction highlights the importance of crystallographic control even for minor modifications such as the introduction of a methyl group. For an in-depth understanding of ligand binding behavior, MD simulations have shown to be a powerful tool.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. John von Neumann - Institut für Computing (NIC)
  3. Strukturbiochemie (ICS-6)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  2. Forschergruppe Gohlke (hkf7_20170501) (hkf7_20170501)

Appears in the scientific report 2019
Database coverage:
Medline ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBI > IBI-7
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
ICS > ICS-6
Publikationsdatenbank
NIC

 Datensatz erzeugt am 2019-10-29, letzte Änderung am 2021-01-30


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)