Journal Article FZJ-2019-05646

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Towards phosphorus recycling for agriculture by algae: Soil incubation and rhizotron studies using 33P-labeled microalgal biomass

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2019
Elsevier Amsterdam [u.a.]

Algal Research 43, 101634 - () [10.1016/j.algal.2019.101634]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Algae effectively accumulate phosphorus (P) from the environment, qualifying them as a promising novel P fertilizer. We hypothesized that P in algae can be rapidly transformed in soil and mobilized for plant growth. To determine the fate of algal fertilizer in soil and to trace its efficiency for plant uptake, we labeled the algae Chlorella vulgaris with the radioisotope 33P. To optimize the labeling we studied P-uptake dynamics in detail using a pre-starved culture and additionally monitored polyphosphate (Poly-P) and organic carbon (C) reserve pools by Raman microscopy. Using an optimized labeling procedure, the concentrations and distribution of both algae-derived 33P and mineral fertilizer 33P (control) were characterized in incubation and rhizotron experiments. Soil incubation was performed with four major reference groups (Andosol, Alisol, Cambisol, and Vertisol). To assess 33P plant uptake we grew wheat in rhizotrons on Cambisol. Soil analyses at different incubation times demonstrated sequential 33P fractionation, while plant uptake of algae-derived 33P was followed using sequential autoradiographic imaging. We found that the algae increased labile P pools comprising Resin- and NaHCO3-extractable P in soils during the first 2 weeks of incubation, similar to the effects of NPK fertilizer. The soils with elevated concentrations of Fe- and Al-oxides (Andosol and Alisol) immediately bound 55 to 80% of the applied fertilizer 33P into the moderately available NaOH-P fraction, whereas the soils with lower concentrations of Fe/Al-oxides (Cambisol, Vertisol) stored 35–71% of the algal-P in the labile fraction. The rhizotron experiments visually supported the release and plant-uptake of algal 33P, thus verifying the suitability of algal-fertilizer for plant growth.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
  2. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2019
Database coverage:
Medline ; Embargoed OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-11-18, last modified 2021-01-30


Published on 2019-08-14. Available in OpenAccess from 2021-08-14.:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)