Journal Article FZJ-2020-00768

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Emergence of Cracklike Behavior of Frictional Rupture: The Origin of Stress Drops

 ;  ;  ;  ;  ;

2019
APS College Park, Md.

Physical review / X Expanding access X 9(4), 041043 () [10.1103/PhysRevX.9.041043]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The process of frictional rupture, i.e., the failure of frictional systems, abounds in the technological and natural world around us, ranging from squealing car brake pads to earthquakes along geological faults. A general framework for understanding and interpreting frictional rupture commonly involves an analogy to ordinary crack propagation, with far-reaching implications for various disciplines from engineering tribology to geophysics. An important feature of the analogy to cracks is the existence of a reduction in the stress-bearing capacity of the ruptured interface, i.e., of a drop from the applied stress, realized far ahead of a propagating rupture, to the residual stress left behind it. Yet, how and under what conditions such finite and well-defined stress drops emerge from basic physics are not well understood. Here, we show that for a rapid rupture a stress drop is directly related to wave radiation from the frictional interface to the bodies surrounding it and to long-range bulk elastodynamics and not exclusively to the physics of the contact interface. Furthermore, we show that the emergence of a stress drop is a transient effect, affected by the wave travel time in finite systems and by the decay of long-range elastic interactions. Finally, we supplement our results for rapid rupture with predictions for a slow rupture. All of the theoretical predictions are supported by available experimental data and by extensive computations. Our findings elucidate the origin of stress drops in frictional rupture; i.e., they offer a comprehensive and fundamental understanding of why, how, and to what extent frictional rupture might be viewed as an ordinary fracture process.

Classification:

Contributing Institute(s):
  1. Theoretische Nanoelektronik (PGI-2)
Research Program(s):
  1. 144 - Controlling Collective States (POF3-144) (POF3-144)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF >= 10 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > PGI > PGI-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-01-31, letzte Änderung am 2021-01-30


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)