Journal Article FZJ-2020-01060

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Tissue evolution: Mechanical interplay of adhesion, pressure, and heterogeneity

 ;  ;  ;

2020
IOP [London]

New journal of physics 22, 033048 () [10.1088/1367-2630/ab74a5]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The evolution of various competing cell types in tissues, and the resulting persistent tissue population, is studied numerically and analytically in a particle-based model of active tissues. Mutations change the properties of cells in various ways, including their mechanical properties. Each mutation results in an advantage or disadvantage to grow in the competition between different cell types. While changes in signaling processes and biochemistry play an important role, we focus on changes in the mechanical properties by studying the result of variation of growth force and adhesive cross-interactions between cell types. For independent mutations of growth force and adhesion strength, the tissue evolves towards cell types with high growth force and low internal adhesion strength, as both increase the homeostatic pressure. Motivated by biological evidence, we postulate a coupling between both parameters, such that an increased growth force comes at the cost of a higher internal adhesion strength or vice versa. This tradeoff controls the evolution of the tissue, ranging from unidirectional evolution to very heterogeneous and dynamic populations. The special case of two competing cell types reveals three distinct parameter regimes: Two in which one cell type outcompetes the other, and one in which both cell types coexist in a highly mixed state. Interestingly, a single mutated cell alone suffices to reach the mixed state, while a finite mutation rate affects the results only weakly. Finally, the coupling between changes in growth force and adhesion strength reveals a mechanical explanation for the evolution towards intra-tumor heterogeneity, in which multiple species coexist even under a constant evolutianary pressure.

Classification:

Contributing Institute(s):
  1. Theorie der Weichen Materie und Biophysik (ICS-2)
  2. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 553 - Physical Basis of Diseases (POF3-553) (POF3-553)
  2. Growth and dynamics of tissues (jics23_20171101) (jics23_20171101)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-HPC
Institute Collections > IBI > IBI-5
Institute Collections > IAS > IAS-2
Workflow collections > Public records
Workflow collections > Publication Charges
ICS > ICS-2
Publications database
Open Access

 Record created 2020-02-13, last modified 2024-06-10