Journal Article FZJ-2020-01924

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Simultaneous multichannel multi‐offset ground‐penetrating radar measurements for soil characterization

 ;  ;  ;

2020
GeoScienceWorld Alexandria, Va.

Vadose zone journal 19(1), e20017 () [10.1002/vzj2.20017]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: For vadose zone studies, it is essential to characterize the soil heterogeneity. However, manual soil coring is time consuming and lacks spatial coverage. Ground‐penetrating radar (GPR) has a high potential to map these parameters. However, with conventional common‐offset profile (COP) measurements, soil layer changes are only detected as a function of time, and no exact determination of velocities, and thus permittivity, is possible. For velocity estimation, time‐consuming point‐scale common midpoint (CMP) or wide‐angle reflection and refraction (WARR) measurements are necessary. Recently, a novel simultaneous multi‐offset multichannel (SiMoc) GPR system was released, enabling rapid profiling with virtually continuous acquisition of WARR gathers. For this system, we developed a new processing approach. First, time shifts caused by the different cables and receivers were eliminated by a novel calibration method. In the obtained CMP gathers, groundwave and (when present) reflection velocities were determined with an automated semblance approach. The obtained velocity can be converted to permittivity and soil water content. We tested SiMoc GPR with a synthetic study and time‐lapse field measurements. In the synthetic study, the accuracy of velocity and layer thickness were within 0.02 m ns−1 and 2 cm. The SiMoc field results (spatial sampling of 5 cm) are consistent with coarse sampled single‐channel data (spatial sampling of 10 m). Soil water content changes over the different measurement days were in agreement with nearby installed sensors (one per hectare). Overall, SiMoc GPR is a powerful tool for fast imaging of spatially highly resolved permittivity, and soil water content at a large scale.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2020-05-11, last modified 2022-09-30