Home > Publications database > Hybrid Materials from Ultrahigh‐Inorganic‐Content Mineral Plastic Hydrogels: Arbitrarily Shapeable, Strong, and Tough |
Journal Article | FZJ-2020-02857 |
; ; ;
2020
Wiley-VCH
Weinheim
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/26209 doi:10.1002/adfm.201910425
Abstract: Natural mineralized structural materials such as nacre and bone possess a unique hierarchical structure comprising both hard and soft phases, which can achieve the perfect balance between mechanical strength and shape controllability. Nevertheless, it remains a great challenge to control the complex and predesigned shapes of artificial organic–inorganic hybrid materials at ambient conditions. Inspired by the plasticity of polymer‐induced liquid precursor phases that can penetrate and solidify in porous organic frameworks for biomineral formation, here a mineral plastic hydrogel is shown with ultrahigh silica content (≈95 wt%) that can be similarly hybridized into a porous delignified wood scaffold, and the resultant composite hydrogels can be manually made into arbitrary shapes. Subsequent air drying well preserves the designed shapes and produces fire‐retardant, ultrastrong, and tough structural organic–inorganic hybrids. The proposed mineral plastic hydrogel strategy opens an easy and eco‐friendly way for fabricating bioinspired structural materials that compromise both precise shape control and high mechanical strength.
Keyword(s): Polymers, Soft Nano Particles and Proteins (1st) ; Materials Science (2nd)
![]() |
The record appears in these collections: |