Journal Article FZJ-2020-03187

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Bifunctional CoFeVO$_x$ Catalyst for Solar Water Splitting by using Multijunction and Heterojunction Silicon Solar Cells

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Wiley Weinheim

Advanced materials technologies 5(12), 2000592 () [10.1002/admt.202000592]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Photovoltaic driven electrochemical (PV-EC) water splitting technology is considered as one of the solutions for an environmental-friendly hydrogen supply. In a PV-EC system, efficient catalysts are required to increase the rate of both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, we present the development of a CoFeVO$_x$ bifunctional catalyst produced by a simple electrodeposition method. We have found that after the water splitting reaction vanadium is almost completely depleted in the mixture of elements for OER while its concentration at the HER catalyst is similar or even higher after the reaction. For the OER catalyst the depletion of vanadium might lead to the formation of pores, which could be correlated with the activity enhancement. The developed catalyst is integrated into PV-EC devices, coupled with different types of silicon PV. An average solar to hydrogen efficiency of 13.3 % (9.6 cm$^2$ PV aperture area) is achieved with a shingled module consisting of three laterally series connected silicon heterojunction solar cells.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 121 - Solar cells of the next generation (POF3-121) (POF3-121)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-5
Publications database
Open Access

 Record created 2020-09-19, last modified 2024-07-12