Journal Article FZJ-2021-00533

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Toward Optimal Metal–Organic Frameworks for Adsorption Chillers: Insights from the Scale‐Up of MIL‐101(Cr) and NH 2 ‐MIL‐125

 ;  ;  ;  ;  ;

2020
Wiley-VCH Weinheim [u.a.]

Energy technology 8(1), 1900617 - () [10.1002/ente.201900617]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The metal–organic frameworks (MOFs) MIL‐101(Cr) and NH2‐MIL‐125 offer high adsorption capacities and have therefore been suggested for sustainable energy conversion in adsorption chillers. Herein, these MOFs are benchmarked to commercial Siogel. The evaluation method combines small‐scale experiments with dynamic modeling of full‐scale adsorption chillers. For the common temperature set 10/30/80 °C, it is found that MIL‐101(Cr) has the highest adsorption capacity, but considerably lower efficiency (−19%) and power density (−66%) than Siogel. NH2‐MIL‐125 increases efficiency by 18% compared with Siogel, but reduces the practically important power density by 28%. From the results, guidelines for MOF development are derived: High efficiencies are achieved by matching the shape of the isotherms to the specific operating temperatures. By only adapting shape, efficiencies are 1.5 times higher. Also, higher power density requires matching the shape of the isotherms to create high driving forces for heat and mass transfer. Second, if MOFs’ heat and mass transfer coefficients could reach the level of Siogel, their maximum power density would double. Thus, development of MOFs should go beyond adsorption capacity, and tune the structure to the application requirements. As a result, MOFs could to serve as optimal adsorbents for sustainable energy conversion.

Classification:

Contributing Institute(s):
  1. Modellierung von Energiesystemen (IEK-10)
Research Program(s):
  1. 899 - ohne Topic (POF3-899) (POF3-899)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; DEAL Wiley ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-1
Workflow collections > Public records
IEK > IEK-10
Publications database
Open Access

 Record created 2021-01-20, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)