Journal Article FZJ-2021-00714

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Raman and X-ray Photoemission Identification of Colloidal Metal Sulfides as Potential Secondary Phases in Nanocrystalline Cu 2 ZnSnS 4 Photovoltaic Absorbers

 ;  ;  ;  ;  ;  ;  ;

2020
ACS Publications Washington, DC

ACS applied nano materials 3(6), 5706 - 5717 () [10.1021/acsanm.0c00910]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The aim of this study is to establish reliable spectroscopic fingerprints of compounds that may form as secondary phases in Cu2ZnSnS4 (CZTS) nanocrystals (NCs) synthesized by “green” colloidal chemistry directly in aqueous solutions or during post-processing of NC films for photovoltaic application. For this purpose, we investigated a series of binary and ternary compound NCs synthesized under the same conditions as the quaternary CZTS NCs. The capabilities of combined Raman and X-ray photoemission (XPS) spectroscopies are used to identify these compounds formed separately and define spectral fingerprints for distinguishing them as possible secondary phases in the spectra of CZTS NCs. Besides the conventional analysis of element ratios and chemical shifts of the core-level peaks in the XPS spectra, the careful analysis of Auger lines and modified Auger parameters are applied to distinguish otherwise similar spectral contributions of different compounds. In the case of CuxS NCs the binding energy separation between the Cu2p3/2 and S2p3/2 core-levels is used as the additional fingerprint. As a criterion of a certain crystal structure in Raman spectroscopy, we rely not only on frequency positions of particular phonon modes but also on selective probing of different compounds at different (resonant) excitation wavelengths. The reasons of controversial previous reports on Raman spectra of CuxS are revealed and characteristic Raman spectra of Sn-poor Cu-Sn-S and Sn-poor Zn-Sn-S are proposed. For Cu-Zn-S, a mixture of CuxS and ZnS is formed under the given mild conditions rather than ternary compounds or alloys.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien (IEK-11)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)
  2. 530 - Science and Technology of Nanosystems (POF3-500) (POF3-500)

Appears in the scientific report 2021
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-2
Workflow collections > Public records
IEK > IEK-11
Publications database
Open Access

 Record created 2021-01-25, last modified 2024-07-12


Published on 2020-05-29. Available in OpenAccess from 2021-05-29.:
Download fulltext DOCX
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)