Journal Article FZJ-2021-00937

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Mechanism of action of polytetrafluoroethylene binder on the performance and durability of high-temperature polymer electrolyte fuel cells

 ;  ;

2021
Elsevier New York, NY [u.a.]

International journal of hydrogen energy 46(27), 14687-14698 () [10.1016/j.ijhydene.2021.01.192]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: In this work, new insights into impacts of the polytetrafluoroethylene (PTFE) binder on high temperature polymer electrolyte fuel cells (HT-PEFCs) are provided by means of various characterizations and accelerated stress tests. Cathodes with PTFE contents from 0 wt% to 60 wt% were fabricated and compared using electrochemical measurements. The results indicate that the cell with 10 wt% PTFE in the cathode catalyst layer (CCL) shows the best performance due to having the lowest mass transport resistance and cathode protonic resistance. Moreover, cyclic voltammograms show that Pt (100) edge and corner sites are significantly covered by PTFE and phosphate anions when the PTFE content is higher than 25 wt%. Open-circuit and low load-cycling conditions are applied to accelerate degradation processes of the HT-PEFCs. The PTFE binder shows a network structure in the pores of the catalyst layer, which reduces phosphoric acid leaching during the aging tests. In addition, the high binder HT-PEFCs more easily suffer from a mass transport problem, leading to more severe performance degradation.

Classification:

Contributing Institute(s):
  1. Elektrochemische Verfahrenstechnik (IEK-14)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)
  2. 1231 - Electrochemistry for Hydrogen (POF4-123) (POF4-123)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-4
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-14
Publications database
Open Access

 Record created 2021-02-04, last modified 2024-07-12