Journal Article FZJ-2021-01034

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Can deep learning beat numerical weather prediction?

 ;  ;  ;  ;  ;  ;  ;

2021
Royal Society London

Philosophical transactions of the Royal Society of London / A 379(2194), 20200097 () [10.1098/rsta.2020.0097] special issue: "Machine learning for weather and climate modelling"

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The recent hype about artificial intelligence has sparked renewed interest in applying the successful deep learning (DL) methods for image recognition, speech recognition, robotics, strategic games and other application areas to the field of meteorology. There is some evidence that better weather forecasts can be produced by introducing big data mining and neural networks into the weather prediction workflow. Here, we discuss the question of whether it is possible to completely replace the current numerical weather models and data assimilation systems with DL approaches. This discussion entails a review of state-of-the-art machine learning concepts and their applicability to weather data with its pertinent statistical properties. We think that it is not inconceivable that numerical weather models may one day become obsolete, but a number of fundamental breakthroughs are needed before this goal comes into reach.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. IntelliAQ - Artificial Intelligence for Air Quality (787576) (787576)
  3. Earth System Data Exploration (ESDE) (ESDE)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Workflow collections > Publication Charges
Institute Collections > JSC
Publications database
Open Access

 Record created 2021-02-15, last modified 2023-01-27