Journal Article FZJ-2021-01353

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Species Differences in Microsomal Metabolism of Xanthine-Derived A1 Adenosine Receptor Ligands

 ;  ;  ;  ;

2021
MDPI Basel

Pharmaceuticals 14(3), 277 - () [10.3390/ph14030277]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Tracer development for positron emission tomography (PET) requires thorough evaluation of pharmacokinetics, metabolism, and dosimetry of candidate radioligands in preclinical animal studies. Since variations in pharmacokinetics and metabolism of a compound occur in different species, careful selection of a suitable model species is mandatory to obtain valid data. This study focuses on species differences in the in vitro metabolism of three xanthine-derived ligands for the A1 adenosine receptor (A1AR), which, in their 18F-labeled form, can be used to image A1AR via PET. In vitro intrinsic clearance and metabolite profiles of 8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine (CPFPX), an established A1AR-ligand, and two novel analogs, 8-cyclobutyl-3-(3-fluoropropyl)-1-propylxanthine (CBX) and 3-(3-fluoropropyl)-8-(1-methylcyclobutyl)-1-propylxanthine (MCBX), were determined in liver microsomes from humans and preclinical animal species. Molecular mechanisms leading to significant differences between human and animal metabolite profiles were also examined. The results revealed significant species differences regarding qualitative and quantitative aspects of microsomal metabolism. None of the tested animal species fully matched human microsomal metabolism of the three A1AR ligands. In conclusion, preclinical evaluation of xanthine-derived A1AR ligands should employ at least two animal species, preferably rodent and dog, to predict in vivo behavior in humans. Surprisingly, rhesus macaques appear unsuitable due to large differences in metabolic activity towards the test compounds.

Classification:

Contributing Institute(s):
  1. Nuklearchemie (INM-5)
  2. Molekulare Organisation des Gehirns (INM-2)
Research Program(s):
  1. 525 - Decoding Brain Organization and Dysfunction (POF4-525) (POF4-525)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-2
Institutssammlungen > INM > INM-5
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-03-15, letzte Änderung am 2022-09-30