Journal Article FZJ-2021-02919

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Atomically dispersed Fe in a C 2 N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Wiley-VCH Weinheim

Advanced energy materials 11(5), 2003507 - () [10.1002/aenm.202003507]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Lithium–sulfur batteries (LSBs) are considered to be one of the most promising next generation energy storage systems due to their high energy density and low material cost. However, there are still some challenges for the commercialization of LSBs, such as the sluggish redox reaction kinetics and the shuttle effect of lithium polysulfides (LiPS). Here a 2D layered organic material, C2N, loaded with atomically dispersed iron as an effective sulfur host in LSBs is reported. X-ray absorption fine spectroscopy and density functional theory calculations prove the structure of the atomically dispersed Fe/C2N catalyst. As a result, Fe/C2N-based cathodes demonstrate significantly improved rate performance and long-term cycling stability. Fe/C2N-based cathodes display initial capacities up to 1540 mAh g−1 at 0.1 C and 678.7 mAh g−1 at 5 C, while retaining 496.5 mAh g−1 after 2600 cycles at 3 C with a decay rate as low as 0.013% per cycle. Even at a high sulfur loading of 3 mg cm−2, they deliver remarkable specific capacity retention of 587 mAh g−1 after 500 cycles at 1 C. This work provides a rational structural design strategy for the development of high-performance cathodes based on atomically dispersed catalysts for LSBs.

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) (POF4-535)
  2. ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) (823717)

Appears in the scientific report 2021
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 25 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > ER-C > ER-C-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-07-07, letzte Änderung am 2021-08-10


Published on 2020-12-18. Available in OpenAccess from 2021-12-18.:
Volltext herunterladen PDF
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)