Home > Workflow collections > Publication Charges > Multifunctional performance of Ti 2 AlC MAX phase/2D braided alumina fiber laminates |
Journal Article | FZJ-2021-03128 |
; ; ; ; ;
2022
Soc.
Westerville, Ohio
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/31299 doi:10.1111/jace.18043
Abstract: The processing and characterization of laminates based on Ti2AlC MAX phase, as matrix, and triaxial alumina braids, as reinforcing phase, are presented. Ti2AlC powders with a mean particle size below 1 µm are synthesized, while commercial 3M Nextel 610 alumina fibers are braided in a three-stage process consisting of spooling, braiding with an angle of 0° and ±60° and the separation to single-layer fabric. The laminates are processed by layer-by-layer stacking, where 3 two-dimensional alumina braids are interleaved between Ti2AlC layers, followed by full densification using a Field-Assisted Sintering Technology/Spark Plasma Sintering. The multifunctional response of the laminates, as well as for the monolithic Ti2AlC, is evaluated, in particular, the thermal and electrical conductivity, the oxidation resistance, and the mechanical response. The laminates exhibit an anisotropic thermal and electrical behavior, and an excellent oxidation resistance at 1200℃ in air for a week. A relatively lower characteristic biaxial strength and Weibull modulus (i.e., σ0 = 590 MPa and m = 9) for the laminate compared to the high values measured in the monolithic Ti2AlC (i.e., σ0 = 790 MPa and m = 29) indicates the need but also the potential of optimizing MAX-phase layered structures for multifunctional performance.
![]() |
The record appears in these collections: |