Journal Article FZJ-2021-03510

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
In‐Memory Binary Vector–Matrix Multiplication Based on Complementary Resistive Switches

 ;  ;  ;

2020
Wiley-VCH Verlag GmbH & Co. KGaA Weinheim

Advanced intelligent systems 2(10), 2000134 - () [10.1002/aisy.202000134]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: This work studies a computation in-memory concept for binary multiply-accumulate operations based on complementary resistive switches (CRS). By exploiting the in-memory boolean exclusive OR (XOR) operation of single CRS devices, the Hamming Distance (HD) can be calculated if the center electrodes of multiple CRS cells are connected. This HD is linearly encoded in the voltage drop of the common electrode, and from it the result of a binary multiply-accumulate operation can be calculated. A small-scale demonstration is experimentally realized and the feasibility of the in-memory computation concept is confirmed. A simulation study identifies the low resistance state (LRS) variability as the main reason for the variations in the output voltage. The application as a potential hardware accelerator for the inference step of binary neural networks is investigated. Therefore, a 1-layer fully connected neural network is trained on a binarized version of the MNIST data set and the inference step of the test data set is simulated. The concept achieves a prediction accuracy of approximately 86%.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 5233 - Memristive Materials and Devices (POF4-523) (POF4-523)
  2. Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K) (16ES1133K)
  3. BMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134) (BMBF-16ES1134)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; DOAJ Seal ; Fees
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
JARA > JARA > JARA-JARA\-FIT
Institutssammlungen > PGI > PGI-7
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-09-15, letzte Änderung am 2022-01-31


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)