Home > Workflow collections > Publication Charges > Convolutional neural networks for high throughput screening of catalyst layer inks for polymer electrolyte fuel cells |
Journal Article | FZJ-2021-03819 |
; ; ; ; ;
2021
RSC Publishing
London
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/28761 doi:10.1039/D1RA05324H
Abstract: The performance of polymer electrolyte fuel cells decisively depends on the structure and processes in membrane electrode assemblies and their components, particularly the catalyst layers. The structural building blocks of catalyst layers are formed during the processing and application of catalyst inks. Accelerating the structural characterization at the ink stage is thus crucial to expedite further advances in catalyst layer design and fabrication. In this context, deep learning algorithms based on deep convolutional neural networks (ConvNets) can automate the processing of the complex and multi-scale structural features of ink imaging data. This article presents the first application of ConvNets for the high throughput screening of transmission electron microscopy images at the ink stage. Results indicate the importance of model pre-training and data augmentation that works on multiple scales in training robust and accurate classification pipelines.
![]() |
The record appears in these collections: |