Journal Article FZJ-2021-03819

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Convolutional neural networks for high throughput screening of catalyst layer inks for polymer electrolyte fuel cells

 ;  ;  ;  ;  ;

2021
RSC Publishing London

RSC Advances 11(51), 32126 - 32134 () [10.1039/D1RA05324H]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The performance of polymer electrolyte fuel cells decisively depends on the structure and processes in membrane electrode assemblies and their components, particularly the catalyst layers. The structural building blocks of catalyst layers are formed during the processing and application of catalyst inks. Accelerating the structural characterization at the ink stage is thus crucial to expedite further advances in catalyst layer design and fabrication. In this context, deep learning algorithms based on deep convolutional neural networks (ConvNets) can automate the processing of the complex and multi-scale structural features of ink imaging data. This article presents the first application of ConvNets for the high throughput screening of transmission electron microscopy images at the ink stage. Results indicate the importance of model pre-training and data augmentation that works on multiple scales in training robust and accurate classification pipelines.

Classification:

Contributing Institute(s):
  1. IEK-13 (IEK-13)
  2. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 1231 - Electrochemistry for Hydrogen (POF4-123) (POF4-123)
  2. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 3.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IET > IET-3
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Institutssammlungen > JSC
IEK > IEK-13
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-10-08, letzte Änderung am 2024-07-12


OpenAccess:
Sales Invoice_INV_014018 - Volltext herunterladen PDF
d1ra05324h - Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)