Journal Article FZJ-2021-04494

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Anticipation in a velocity-based model for pedestrian dynamics

 ;  ;

2021
Elsevier Science Amsterdam [u.a.]

Transportation research / C 133, 103464 - () [10.1016/j.trc.2021.103464]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Lane formation in bidirectional pedestrian streams is based on a stimulus-response mech-anism and strategies of navigation in a fast-changing environment. Although microscopicmodels that only guarantee volume exclusion can qualitatively reproduce this phenomenon,they are not sufficient for a quantitative description. To quantitatively describe this phe-nomenon, a minimal anticipatory collision-free velocity model is introduced. Compared tothe original velocity model, the new model reduces the occurrence of gridlocks and repro-duces the movement of pedestrians more realistically. For a quantitative description of thephenomenon, the definition of an order parameter is used to describe the formation of lanesat transient states and to show that the proposed model compares relatively well with ex-perimental data. Furthermore, the model is validated by the experimental fundamentaldiagrams of bidirectional flows

Classification:

Contributing Institute(s):
  1. Zivile Sicherheitsforschung (IAS-7)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. SISAME - SImulations for SAfety at Major Events (HGF-DB001687) (HGF-DB001687)

Appears in the scientific report 2021
Database coverage:
Medline ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IAS > IAS-7
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-11-24, letzte Änderung am 2022-04-19


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)