Journal Article FZJ-2022-01537

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Revealing Whole-Brain Causality Networks During Guided Visual Searching

 ;  ;  ;  ;  ;  ;

2022
Frontiers Research Foundation Lausanne

Frontiers in neuroscience 16, 826083 () [10.3389/fnins.2022.826083]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: In our daily lives, we use eye movements to actively sample visual information from our environment (“active vision”). However, little is known about how the underlying mechanisms are affected by goal-directed behavior. In a study of 31 participants, magnetoencephalography was combined with eye-tracking technology to investigate how interregional interactions in the brain change when engaged in two distinct forms of active vision: freely viewing natural images or performing a guided visual search. Regions of interest with significant fixation-related evoked activity (FRA) were identified with spatiotemporal cluster permutation testing. Using generalized partial directed coherence, we show that, in response to fixation onset, a bilateral cluster consisting of four regions (posterior insula, transverse temporal gyri, superior temporal gyrus, and supramarginal gyrus) formed a highly connected network during free viewing. A comparable network also emerged in the right hemisphere during the search task, with the right supramarginal gyrus acting as a central node for information exchange. The results suggest that all four regions are vital to visual processing and guiding attention. Furthermore, the right supramarginal gyrus was the only region where activity during fixations on the search target was significantly negatively correlated with search response times. Based on our findings, we hypothesize that, following a fixation, the right supramarginal gyrus supplies the right supplementary eye field (SEF) with new information to update the priority map guiding the eye movements during the search task.

Classification:

Contributing Institute(s):
  1. Jara-Institut Quantum Information (INM-11)
  2. Physik der Medizinischen Bildgebung (INM-4)
  3. Kognitive Neurowissenschaften (INM-3)
  4. Computational and Systems Neuroscience (INM-6)
  5. Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA-BRAIN)
Research Program(s):
  1. 5253 - Neuroimaging (POF4-525) (POF4-525)
  2. 5231 - Neuroscientific Foundations (POF4-523) (POF4-523)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-11
Institute Collections > IAS > IAS-6
Institute Collections > INM > INM-6
Institute Collections > INM > INM-3
Institute Collections > INM > INM-4
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2022-03-08, last modified 2024-07-05


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)