Journal Article FZJ-2022-01708

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Canonical Workflows to Make Data FAIR

 ;  ;  ;  ;  ;  ;  ;

2022
MIT Press Cambridge, MA

Data Intelligence 4(2), 286–305 () [10.1162/dint_a_00132]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The FAIR principles have been accepted globally as guidelines for improving data-driven science and data management practices, yet the incentives for researchers to change their practices are presently weak. In addition, data-driven science has been slow to embrace workflow technology despite clear evidence of recurring practices. To overcome these challenges, the Canonical Workflow Frameworks for Research (CWFR) initiative suggests a large-scale introduction of self-documenting workflow scripts to automate recurring processes or fragments thereof. This standardised approach, with FAIR Digital Objects as anchors, will be a significant milestone in the transition to FAIR data without adding additional load onto the researchers who stand to benefit most from it. This paper describes the CWFR approach and the activities of the CWFR initiative over the course of the last year or so, highlights several projects that hold promise for the CWFR approaches, including Galaxy, Jupyter Notebook, and RO Crate, and concludes with an assessment of the state of the field and the challenges ahead.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. IntelliAQ - Artificial Intelligence for Air Quality (787576) (787576)
  3. Verbundprojekt DeepRain: Effiziente Lokale Niederschlagsvorhersage durch Maschinelles Lernen (01IS18047A) (01IS18047A)
  4. Earth System Data Exploration (ESDE) (ESDE)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY (No Version) ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
JuOSC (Juelich Open Science Collection)
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-03-22, letzte Änderung am 2023-07-12


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)