Journal Article FZJ-2022-03076

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A MademoiseLLE domain binding platform links the key RNA transporter to endosomes

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
Public Library of Science San Francisco, Calif.

PLoS Genetics 18(6), e1010269 - () [10.1371/journal.pgen.1010269]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Spatiotemporal expression can be achieved by transport and translation of mRNAs at defined subcellular sites. An emerging mechanism mediating mRNA trafficking is microtubule-dependent co-transport on shuttling endosomes. Although progress has been made in identifying various components of the endosomal mRNA transport machinery, a mechanistic understanding of how these RNA-binding proteins are connected to endosomes is still lacking. Here, we demonstrate that a flexible MademoiseLLE (MLLE) domain platform within RNA-binding protein Rrm4 of Ustilago maydis is crucial for endosomal attachment. Our structure/function analysis uncovered three MLLE domains at the C-terminus of Rrm4 with a functionally defined hierarchy. MLLE3 recognises two PAM2-like sequences of the adaptor protein Upa1 and is essential for endosomal shuttling of Rrm4. MLLE1 and MLLE2 are most likely accessory domains exhibiting a variable binding mode for interaction with currently unknown partners. Thus, endosomal attachment of the mRNA transporter is orchestrated by a sophisticated MLLE domain binding platform.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. John von Neumann - Institut für Computing (NIC)
  3. Strukturbiochemie (IBI-7)
  4. Bioinformatik (IBG-4)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)
  3. Forschergruppe Gohlke (hkf7_20200501) (hkf7_20200501)
  4. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-7
Institute Collections > IBG > IBG-4
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access
NIC

 Record created 2022-08-17, last modified 2023-01-28


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)