Journal Article FZJ-2022-03250

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Filamentary TaO x /HfO 2 ReRAM Devices for Neural Networks Training with Analog In‐Memory Computing

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
Wiley-VCH Verlag GmbH & Co. KG Weinheim

Advanced electronic materials 8(10), 2200448 - () [10.1002/aelm.202200448]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The in-memory computing paradigm aims at overcoming the intrinsic inefficiencies of Von-Neumann computers by reducing the data-transport per arithmetic operation. Crossbar arrays of multilevel memristive devices enable efficient calculations of matrix-vector-multiplications, an operation extensively called on in artificial intelligence (AI) tasks. Resistive random-access memories (ReRAMs) are promising candidate devices for such applications. However, they generally exhibit large stochasticity and device-to-device variability. The integration of a sub-stoichiometric metal-oxide within the ReRAM stack can improve the resistive switching graduality and stochasticity. To this purpose, a conductive TaOx layer is developed and stacked on HfO2 between TiN electrodes, to create a complementary metal-oxide-semiconductor-compatible ReRAM structure. This device shows accumulative conductance updates in both directions, as required for training neural networks. Moreover, by reducing the TaOx thickness and by increasing its resistivity, the device resistive states increase, as required for reduced power consumption. An electric field-driven TaOx oxidation/reduction is responsible for the ReRAM switching. To demonstrate the potential of the optimized TaOx/HfO2 devices, the training of a fully-connected neural network on the Modified National Institute of Standards and Technology database dataset is simulated and benchmarked against a full precision digital implementation.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 5233 - Memristive Materials and Devices (POF4-523) (POF4-523)
  2. MANIC - Materials for Neuromorphic Circuits (861153) (861153)
  3. DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811) (167917811)
  4. BMBF-16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K) (BMBF-16ME0398K)
  5. BMBF-16ME0404 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0404) (BMBF-16ME0404)
  6. BMBF-03ZU1106AB - NeuroSys: "Memristor Crossbar Architekturen (Projekt A) - B" (BMBF-03ZU1106AB) (BMBF-03ZU1106AB)
  7. ACA - Advanced Computing Architectures (SO-092) (SO-092)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
JARA > JARA > JARA-JARA\-FIT
Institutssammlungen > PGI > PGI-7
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-09-06, letzte Änderung am 2023-03-10


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)