Journal Article FZJ-2022-03848

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Laminated Monolithic Perovskite/Silicon Tandem Photovoltaics

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
Wiley-VCH Weinheim

Advanced energy materials 12(27), 2200961 - () [10.1002/aenm.202200961]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Perovskite/silicon tandem photovoltaics have attracted enormous attention in science and technology over recent years. In order to improve the performance and stability of the technology, new materials and processes need to be investigated. However, the established sequential layer deposition methods severely limit the choice of materials and accessible device architectures. In response, a novel lamination process that increases the degree of freedom in processing the top perovskite solar cell (PSC) is proposed. The very first prototypes of laminated monolithic perovskite/silicon tandem solar cells with stable power output efficiencies of up to 20.0% are presented. Moreover, laminated single-junction PSCs are on par with standard sequential layer deposition processed devices in the same architecture. The numerous advantages of the lamination process are highlighted, in particular the opportunities to engineer the perovskite morphology, which leads to a reduction of non-radiative recombination losses and and an enhancement in open-circuit voltage (Voc). Laminated PSCs exhibit improved stability by retaining their initial efficiency after 1-year aging and show good thermal stability under prolonged illumination at 80 °C. This lamination approach enables the research of new architectures for perovskite-based photovoltaics and paves a new route for processing monolithic tandem solar cells even with a scalable lamination process.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 1213 - Cell Design and Development (POF4-121) (POF4-121)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 25 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IMD > IMD-3
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-5
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-10-26, letzte Änderung am 2024-07-12


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)