Journal Article FZJ-2022-04568

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Learning and replaying spatiotemporal sequences: A replication study

 ;  ;

2022

Frontiers in integrative neuroscience 16, 113 () [10.3389/fnint.2022.974177]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Learning and replaying spatiotemporal sequences are fundamental computations performed by the brain and specifically the neocortex. These features are critical for a wide variety of cognitive functions, including sensory perception and the execution of motor and language skills. Although several computational models demonstrate this capability, many are either hard to reconcile with biological findings or have limited functionality. To address this gap, a recent study proposed a biologically plausible model based on a spiking recurrent neural network supplemented with read-out neurons. After learning, the recurrent network develops precise switching dynamics by successively activating and deactivating small groups of neurons. The read-out neurons are trained to respond to particular groups and can thereby reproduce the learned sequence. For the model to serve as the basis for further research, it is important to determine its replicability. In this Brief Report, we give a detailed description of the model and identify missing details, inconsistencies or errors in or between the original paper and its reference implementation. We re-implement the full model in the neural simulator NEST in conjunction with the NESTML modeling language and confirm the main findings of the original work.

Classification:

Contributing Institute(s):
  1. Computational and Systems Neuroscience (INM-6)
  2. Theoretical Neuroscience (IAS-6)
  3. Jara-Institut Brain structure-function relationships (INM-10)
  4. Elektronische Materialien (PGI-7)
  5. JARA Institut Green IT (PGI-10)
Research Program(s):
  1. 574 - Theory, modelling and simulation (POF3-574) (POF3-574)
  2. 5232 - Computational Principles (POF4-523) (POF4-523)
  3. Advanced Computing Architectures (aca_20190115) (aca_20190115)
  4. PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) (PHD-NO-GRANT-20170405)
  5. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  6. Open-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487) (491111487)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-10
Institute Collections > IAS > IAS-6
Institute Collections > INM > INM-6
Institute Collections > PGI > PGI-10
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2022-11-11, last modified 2024-03-13


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)