| Home > Publications database > Advancements in non-invasive visualization of the immune environment in glioblastoma: A Systematic Review |
| Journal Article | FZJ-2025-03593 |
; ; ; ; ; ; ; ; ;
2025
Oxford University Press
Oxford
This record in other databases:
Please use a persistent id in citations: doi:10.1093/noajnl/vdaf176 doi:10.34734/FZJ-2025-03593
Abstract: Background: Glioblastoma is known for its highly immunosuppressive microenvironment, hindering the efficacy of immunotherapies. Noninvasive imaging like immuno-positron emission tomography (PET) offers the potential for visualizing immune dynamics within glioblastoma, potentially aiding in patient selection and treatment monitoring. This systematic review evaluates immuno-PET tracers currently under investigation for the noninvasive visualization of the immune environment in glioblastoma.Methods: A literature search was conducted in PubMed and Web of Science up to March 2025, using keywords related to glioblastoma, immuno-PET, immune compartments, and specific tracers. Studies were screened based on predefined inclusion and exclusion criteria, focusing on the development, characterization, or application of immuno-PET tracers targeting immune cells or immune checkpoint molecules in glioblastoma.Results: Nineteen studies met the inclusion criteria, exploring tracers targeting immune checkpoints and immune cell populations. Full-length antibodies demonstrated higher tumor specificity and retention compared to smaller fragments but showed longer circulation times. Peptide-based tracers and affibodies offered improved pharmacokinetics with rapid clearance and lower nonspecific uptake but encountered hurdles in ensuring adequate tumor targeting and retention. Advancements included dual-modal tracers combining PET and near-infrared fluorescence imaging for enhanced diagnostic and intraoperative applications.Conclusions: Significant progress has been made in developing immuno-PET tracers for noninvasive visualization of immune reactions in glioblastoma. Challenges persist in clinical translation due to issues like blood-brain barrier permeability and safety profiles. Continued research and clinical evaluations are essential to harness the potential of immuno-PET in improving glioblastoma diagnosis, assessment of treatment response, and guiding personalized immunotherapy strategies, ultimately aiming to enhance patient outcomes.Keywords: brain tumors; glioma; immune imaging; immuno-PET; immunotherapy.
|
The record appears in these collections: |