Journal Article PreJuSER-54436

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Guanidinate-stabilized monomeric hafnium amide complexes as promising precursors for MOCVD of HfO2

 ;  ;  ;  ;  ;  ;  ;

2006
American Chemical Society Washington, DC

Inorganic chemistry 45, 11008 - 11018 () [10.1021/ic061056i]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Novel guanidinato complexes of hafnium [Hf{eta2-(iPrN)2CNR2}2(NR2)2] (R2 = Et2, 1; Et, Me, 2; Me2, 3), synthesized by insertion reactions of N,N'-diisopropylcarbodiimide into the M-N bonds of homologous hafnium amide complexes 1-3 and {[mu2-NC(NMe2)2][NC(NMe2)2]2HfCl}2 (4) using a salt metathesis reaction, are reported. Single-crystal X-ray diffraction analysis revealed that compounds 1-3 were monomers, while compound 4 was found to be a dimer. The observed fluxional behavior of compounds 1-3 was studied in detail using variable-temperature and two-dimensional NMR techniques. The thermal characteristics of compounds 1-3 seem promising for HfO2 thin films by vapor deposition techniques. Metal-organic chemical vapor deposition experiments with compound 2 as the precursor resulted in smooth, uniform, and stoichiometric HfO2 thin films at relatively low deposition temperatures. The basic properties of HfO2 thin films were characterized in some detail.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Contributing Institute(s):
  1. Elektronische Materialien (IFF-IEM)
  2. Center of Nanoelectronic Systems for Information Technology (CNI)
Research Program(s):
  1. Grundlagen für zukünftige Informationstechnologien (P42)

Appears in the scientific report 2006
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database

 Record created 2012-11-13, last modified 2019-06-25



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)