Journal Article FZJ-2016-02283

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Extreme ultraviolet proximity lithography for fast, flexible and parallel fabrication of infrared antennas

 ;  ;  ;  ;  ;  ;  ;

2015
Soc. Washington, DC

Optics express 23(20), 25487 - () [10.1364/OE.23.025487]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: We present a method for fabrication of large arrays of nano-antennas using extreme-ultraviolet (EUV) illumination. A discharge-produced plasma source generating EUV radiation around 10.88 nm wavelength is used for the illumination of a photoresist via a mask in a proximity printing setup. The method of metallic nanoantennas fabrication utilizes a bilayer photoresist and employs a lift-off process. The impact of Fresnel-diffraction of EUV light in the mask on a shape of the nanostructures has been investigated. It is shown how by the use of the same rectangular apertures in the transmission mask, antennas of various shapes can be fabricated. Using Fourier transform infrared spectroscopy, spectra of antennas reflectivity were measured and compared to FDTD simulations demonstrating good agreement.

Classification:

Contributing Institute(s):
  1. Halbleiter-Nanoelektronik (PGI-9)
  2. JARA-FIT (JARA-FIT)
  3. Rheinisch-Westfälische Technische Hochschule (RWTH)
Research Program(s):
  1. 521 - Controlling Electron Charge-Based Phenomena (POF3-521) (POF3-521)

Appears in the scientific report 2016
Database coverage:
Medline ; DOAJ ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-9
Workflow collections > Public records
Publications database
Open Access

 Record created 2016-04-15, last modified 2021-01-29