Home > Publications database > A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion |
Journal Article | FZJ-2016-07676 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2016
Nature Publishing Group
London
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/13412 doi:10.1038/srep38399
Abstract: The conserved SecYEG protein-conducting channel and the accessory proteins SecDF-YajC and YidC constitute the bacterial holo-translocon (HTL), capable of protein-secretion and membrane-protein insertion. By employing an integrative approach combining small-angle neutron scattering (SANS), low-resolution electron microscopy and biophysical analyses we determined the arrangement of the proteins and lipids within the super-complex. The results guided the placement of X-ray structures of individual HTL components and allowed the proposal of a model of the functional translocon. Their arrangement around a central lipid-containing pool conveys an unexpected, but compelling mechanism for membrane-protein insertion. The periplasmic domains of YidC and SecD are poised at the protein-channel exit-site of SecY, presumably to aid the emergence of translocating polypeptides. The SecY lateral gate for membrane-insertion is adjacent to the membrane ‘insertase’ YidC. Absolute-scale SANS employing a novel contrast-match-point analysis revealed a dynamic complex adopting open and compact configurations around an adaptable central lipid-filled chamber, wherein polytopic membrane-proteins could fold, sheltered from aggregation and proteolysis.
Keyword(s): Health and Life (1st) ; Biology (2nd)
![]() |
The record appears in these collections: |