Journal Article FZJ-2017-01616

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2017
OSA Washington, DC

Optica 4(2), 185-188 () [10.1364/OPTICA.4.000185]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Group IV photonics is on its way to be integrated with electronic circuits, making information transfer and processing faster and more energy efficient. Light sources, a critical component of photonic integrated circuits, are still in development. Here, we compare multi-quantum-well (MQW) light-emitting diodes (LEDs) with Ge0.915Sn0.085 wells and Si0.1Ge0.8Sn0.1 barriers to a reference Ge0.915Sn0.085 homojunction LED. Material properties as well as band structure calculations are discussed, followed by optical investigations. Electroluminescence spectra acquired at various temperatures indicate effective carrier confinement for electrons and holes in the GeSn quantum wells and confirm the excellent performance of GeSn/SiGeSn MQW light emitters.

Classification:

Contributing Institute(s):
  1. Halbleiter-Nanoelektronik (PGI-9)
  2. JARA-FIT (JARA-FIT)
  3. Analytik (ZEA-3)
Research Program(s):
  1. 521 - Controlling Electron Charge-Based Phenomena (POF3-521) (POF3-521)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > ZEA > ZEA-3
Institute Collections > PGI > PGI-9
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database

 Record created 2017-02-07, last modified 2022-09-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)